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A COMPARISON OF THE MODELS OF A THIN AND A COMPLETE VISCOUS SHOCK LAYER IN 
THE PROBLEM OF THE SUPERSONIC FLOW OF A VISCOUS GAS PAST BLUNT CONES* 

G.A. TIRSKII and S.V. UTYUZHNIKOV 

The flow of a viscous heat conducting supersonic gas past spherically 
blunted cones is used to compare the solutions of the equations of a 
thin (hypersonic) viscous shock layer (TVSL) with a given form of the 
shock wave (SW), with the solutions of the complete equations of a 
viscous shock layer (CVSL) in which the assumption that the shock layer 
is thin is not made and, which is important, the form of the SW is 
determined in the course of solving the problem. It is shown that a 
"successful" description of the form of the SW in solving the problem of 
hypersonic flow past a blunt cone within the framework of the equations 
of a TVSL provides, firstly, the possibility of obtaining the solution 
at considerable distances downstream and secondly, of sharpening the 
solution considerably, assuming that it can be obtained at all within 
the framework of the equations of the TVSL, compared with the commonly 
used asymptotic approach in which the form of the SW is assumed, in 
solving these equations, to be an equidistant form of the body. 

The description of the supersonic flow of a viscous, heat conducting gas past a body 
using the simplified (parabolized) Navier-Stokes equations employs, as a rule, the Cheng 
two-layer model /l, 2/. According to Cheng, the whole perturbed region of the gas in front 
of the body can be divided into a region of viscous shock layer, and a transitional region 
corresponding to a density jump. The transition region is described by a system of ordinary 
differential equations which transforms, after appropriate simplifications, into the 
generalized Rankine-Hugoniot conditions. The region of the viscous shock layer is described 
using various systems of equations which are obtained either by an asymptotic method 
involving the separation of one or several small parameters of the problem (see e.g., /3/l, 
or by a heuristic method involving an estimation of the contribution of each term of the 
system of equations /4/. In both cases the domain of applicability of the model is not clear 
in advance, and can be determined only be comparison with the complete Navier-Stokes 
equations. It should be noted that the domain of applicability of the simplified 
Navier-Stokes equations used to obtain a number of basic aerodynamic and thermal 
characteristics is found, as a rule, to be much wider than that of the formal asymptotic 
estimates. 

1. Model of a thin viscous shock layer U'VSL). Historically, the first system of simpli- 
fied Navier-Stokes equations, which is also the one most often used by virtue of its mathemat- 
ical simplicity, is the system of equations of the TVSL (see e.g., /l-6/), obtained under the 
assumption that Y+ 1, M, --f 00, Re,- x (y is the adiabatic ratio, M is the Mach number and 
Re is the Reynolds number). The equations of the TVSL contain all terms appearing in the 
equations of a non-viscous hypersonic shock layer /7/. The system of two-dimensional equations 
of the TVSL in a curvilinear system of coordinates attached to the body, has the form 

(1.1) 

Here x is the arc length of the contour of the body, y is the distance between the normal 
and the surface of the body, u and v are the physical velocity components in the x and y 
directions, H is the total specific enthalpy, o is the Prandtl number, R (5) is the radius 
of curvature of the contour of the body, H, and 21 are the metric Lam& coefficients, HI=1 + 

Y/Q. r is the distance between the given point of space and the axis of the body, v .: 0 
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in the plane case and v = 1 in the axisymmetric case, and o is a parameter describing 
the contribution of the centrifugal force (Og w Ql) (see Sect.3 for more details). System 
(1.1) must be supplemented by the equation-of state. 

We will use the condition of adhesion as the boundary condition on the body for the 
velocity, and we will assume that the surface of the body is either impermeable, or injection 
of prescribed intensity taken place from the surface of the body. The temperature at the wall 
is specified by one of the possible boundary conditions of the first, second or third kind. 
The terms describing the effect of slippage and temperature jump, under the assumption that 
the model of the TVSL is valid, are regarded as extraneous. 

The generalized Rankine-Hugoniot conditions serve as boundary conditions on the inner 
(conditional) boundary of the SW for system (l.l), and are written in the hypersonic 
approximation as 

u, = u, tg p8 - k, sin p I cos fiB 

U, = cos p cos fis + k, sin j-3 sin p, - (@u&), i sin fi 

H, = 1 - (pLII i (u sin B))(aH 1 ay), 

P, = (1 - k,) sin* p f 1 i (vM-*) 

(1.2) 

Here k, = psvl, fls and p is the angle of inclination of the SW to the body and to the 
axis of the body respectively. 

The formulation of the problem is "supplemented" (the meaning of this expression will 
become clear below) by spcifying a priori the form of the leading SW which is, as a rule, 
equidistant from the surface of the body. 

The sytem of equations of the TVSL is practically identical with the system of Prandtl 
equations. Its solution is even simpler than the solution of equations of the boundary layer, 
since here the problem connected with specifying the external pressure field does not arise 
(the field is determined in the course of solving the problem, from the third equation of 
system (1.1)). It should be noted that the problem is overdefined in the above formulation, 
since the SW serves as a free boundary whose position should be determined in the course of 
solving the problem. As was shown in /8/, this also follows from the results of /9/. The 
problem of determining the position of the SW is elliptic in the sense that a given point of 
the SW can also be influenced by a region situated further downstream even if the mechanism 
of transfer to weak perturbations in the upstream direction is not described by the system of 
equations of motion itself, as in the case of the TVSL (see Sect.2). 

In order to solve this problem, it is necessary to use, in the course of determining the 
position of the SW, one or another iteration method, and this gives rise to well-known dif- 
ficulties. Therefore, in the overwhelming majority of investigations using the equations of 
the TVSL, the position of the SW was specified, as a rule, as being equidistant from the 
surface of the body, and even without further revision. 

2. Plode~ of a complete viscous shock layer (CVSL). Further development of the model of 
the TVSL is represented by the system of equations of the CVSL proposed in /lo/, and a similar 
system of parabolized Navier-Stokes equations /ll/. Using the coordinates x, y, we can write 
the system of equations of the CVSL as follows: 

P(+~+o~)=+p+(H,r~~X 
(Y&+2$_ 2$_+&)) 

In the course of formulating the boundary conditions on the body for the system of 
equations of the CVSL, when the Reynolds numbers (106 Re,<105) are moderate or small, we 
must take into account the effects of slippage and a temperature jump. 

The boundary conditions on the SW, whose position is determined in the course of solving 
the problem, are represented for the equations of the CVSL by the generalized 
Rankine-Hugoniot conditions, which differ from (1.2) in the fact that the quantity (~?a/&), 
in the second equation is replaced by(&/ay - uI(RH,)),. 

The main difference between systems (2.1) and (1.1) is, that the normal component of the 
velocity U is no longer assumed to be small, i.e. the condition y-l becomes optional. 
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Therefore the momentum equation projected on the normal to the body will contain on its 
left-hand side all acceleration terms. The system of Eqs.(2.1) contains all terms of the 
complete Navier-Stokes which contribute to the second boundary layer approximation in the 
small parameter k&l* for the inner as well as for the outer expansion. 
we take into account the terms of order 

Using this approach 

0 (1) and O(Re-'I*), and neglect terms of order 
0, (Re-I). responsible for the molecular transfer of mass, 
Unlike the system of Eqs.(l.l), 

momentum and energy along the body. 
system (2.1) already describes the propagation of perturbations 

upstream in subsonic regions of the flow, and system (2.1) in these regions is elliptic. 
Since we always have the subonsic regions when the gas adheres to the walls, it follows that 
the Cauchy problem in x for the system of equations of the CVSL is ill-posed along the whole 
surface of the streamlined body. 

Because of that, the system of equations of the CVSL is often solved using the method of 
establishment. It was remarked in /12/ that the time needed to solve the system of stationary 
equations of the CVSL on a digital computer using the method of establishment was comparable 
with the time needed to solve the system of complete Navier-Stokes equations. A method of 
solving the equations of the CVSL on a digital computer was given in /13/*. (*See also 
Utyuzhnikov S.V. A numerical method of solving the complete equations of a viscous shock 
layer, Dissertation, MFTI, Moscow, 1986.) The method was highly economical in memory and 
time, based on carrying out the global iterations, and allowed a tenfold reduction in computer 
time. Nevertheless, solving the system of equations of the CVSL remains a fairly complicated 
and time-consuming process. Therefore, whenever the accuracy requirements allow, it is better 
to use simpler models such as the model of the TVSL, although in this case the amount of 
irremovable error inherent in the model must be clearly-described. 

The error in the model of the TVSL in the case of smooth spheres and a hyperboloid or 
paraboloid of revolution was studied earlier (e.g. in /14/), where it was proposed not to fix 
a priori the form of the SW in the course of solving the equations of the TVSL, but to refine 
it with the help of global iterations using the integral relation of the mass balance of the 
gas /13/. Flow past a hyperboloid of revolution with an. aperture half-angle of lo0 was 
solved as an example to illustrate that the latter method considerably reduced was error of 
the model within the framework of the equations of the TVSL. 

3. comparison of the models. ResuZts of computations. The error of the model of the 
TVSL was investigated for the case of flow past a spherically blunted cone, by comparing the 
solutions of the system of equations of the thin, and the complete viscous shock layer. The 
equations of the TVSL were solved here with the position of the SW more acurately defined, as 
in /4/. In studying the error of the model of the TVSL the authors used existing information 
which states that the difference between the solutions of the system of equations of the CVSL 
and the system of complete Navier-Stokes equations for the distribution of the pressure, 
friction and heat fluxes does not exceed, in the case of flows past blunt cones, l-2% for 
Re, > 105. The system of equations of the CVSL was solved by numerical methods /13/. 

In carrying out the numerical computations, we used independent variables of the 
Dorodnitsyn type 5, I) /4/ 

where Ys (2) is the separation of the SW from the body. 
The difference scheme used had second order of approximation in the derivatives in x, 

and fourth order in y. In order to solve motion with large gradients, we used a variable 
distribution of the steps of the difference mesh in n, which were chosen at every point 
depending on the variation of the function in its neighbourhood. The nodes of the difference 
mesh in 5 were distributed in such a manner that one of the nodes was at the point of con- 
jugation of the sphere with the cone, representing the point of discontinuity in the curvature 
of the generatrix. When solving the equations of the CVSL, we determined the point of con- 
jugation with the second-order approximation using the exact relations for the discontinuity 
in the first-order and second-order derivatives of the functions sought, in the intrinsic 
coordinate system obtained in /15/. 

When the model of the TVSL was used, we specified the position of the SW on the spherical 
part using the following approximate formula /9/: 

tg ps = c I(@ - 1) c-2 + tg* a)"- tga1 (3.2) 
c = 'i&G (0) (R (0) + YS (Q-l 

where R,(z) is the radius of curvature of the SW. In estimating Y, (0) and R, (0), we used 
the well-known approximation formulas /16/, and the following semi-empirical formula was used 
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for the conical part of the body (see the paper toUtyushnikovcited in the earlier footnote): 

(3.3) 

(XC is the coordinate of the point of conjugation). Comparison with the numerical solutions 
shows that the composite formula (3.21, (3.3) gives a fairly good approximation, the error 
being of the order of lO-30%. The results of the computations given below correspond to the 
flows of a real gas past spherically blunted cones for M,=zO, Re,=102, Tlt=0.5 (T, is a 

temperature factor). 
Fig.1 shows the distribution along the surface of the cone with an aperture half-angle 

of 300, of the heat flux in the form of the Stanton number St= h (aTlay),,llp,v,H,(i -T,)], and 

of the pressure referred to 2 P,V5s 2 is the coordinate along the cone axis measured from the 

stagnation point. The dashed lines correspond to computations based on the equations of the 
TVSL, with prescribed position of the SW (3.21, (3.3). The curve shown by light dots cor- 
responds to a computation based on the model of the TVSL where the position of the SW is 
determined using iterative methods, and the curve shown by dark dots refers to the computation 
based on the model of the CVSL. We see from the graphs that, unlike the class of smooth 
bodies, the iterative refinement of the position of the SW based on the model of the TVSL, 
yields approximately the same error in determining the values of the functions sought on the 
body, as when the approximate formulas (3.2), (3.3) are used. The difference in the values 
of the local coefficient of friction C/ = x/IP,u (ada&J I(p ,&) obtained with help of the model of 
the TVSL was lo-15%. 

st 

Fig.1 

The model of the TVSL appears to be completely acceptable for studying flows past cones 
with an aperture half-angle exceeding 45O, since the admissible error allowed in this case 
does not exceed 10%. Fig.2 shows, as an example, the computed data on the distribution of the 
values of the local coefficient of friction q along the surface of the cone with an aperture 
half-angle of 45O. In the case of flows part thin blunt cones the model of the TVSL is either 
inapplicable, or partly applicable. (The results of computing the distribution of pressure 
along the surface of the cone with an aperture half-angle of 15' are given in Fig.2; the 
notation used is the same as in Fig.1). 

We note that in computing the data we assumed that the value of the parameter o in (1.1) 
was zero, since the approximation used for this class of bodies is more accurate /16/. 
Moreover, a value of 0 different from zero leads to a "non-physical" jump in the presure at 
the point of conjugation of the sphere with the cone. 

For each model of the flow, we compared the accuracy with which the integral laws of 
conservation, based on the complete system of Wavier-Stokes equations, were satisfied. The 
control volume was determined by rotating the generatrix ABCDE (Fig.31 about the axis of the 
body, where the line BC is parallel to the normal to the surface of the body, the line DC 
is parallel to the axis of the body and the point C lies on the outer boundary of the SW. 
The relative difference in the incoming mass (subscript +) and outgoing mass (subscript -1, 
momentum and energy fluxes, was calculated as a percentage using the relation 

SQ = I(Q+ + Q-)/Q-I x 100 (3.4) 
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Here, we mean by the incoming flow the flow through the surface t?B, and by the outgoing 
flow we mean the flow through the surface CD, as well as the momentum and energy losses at 
the surface DE, i.e., on the bodies. 

The table shows some versions of the comparisons made. Here 6Q,, 6Qi, 6Qe are the 
disbalances in the mass, momentum and energy fluxes respectively, calculated using formula 
(3.4). TVSL(G1) denotes the use of the TVSL model in which the position of the SW is deter- 
mined by iteration. Compuations were carried out for various aperture half-angles 0 of the 
cone. In the case of the model of the TVSL 6Q,=7 at Il=45O and 6Q,, = 5 at 8 = 30". 
Since in the global iteration the position of the SW is determined from the condition of mass 
balance, it follows that in the CVSL and TVSL(GI1 versions the mass disbalance is zero. When 
8=15", the computation of the TVSL used as the starting point the computation carried out 
earlier for 8= 30° and we have therefore no version of the TVSL for O= 15' in the table. 

i 
0.5 z I 

Fig.2 Fig.3 

Using the results of the present paper and of /14/, we can draw the following conclusions. 
The model of the TVSL yields acceptable results, when the position of the SW is specified 
with sufficient accuracy, in the case of flows past smooth blunt hyperboloids or paraboloids 
of revolution. The traditional assignment of the form of the SW as being equidistant from 
the contour of the body can result in appreciable error, especially in determining the pressure 
on the body, and this considerably narrows the domain of applicability of this model. 

Model 

e = 15” 30” 15” 

dQi 6Q;lO’ bQi bQ;iO’ &Pi 63,. 10’ 

When it comes to numerical modelling of the flow past a blunt cone, the model of the 
TVSL can be used in practice only in the case when the aperture half-angles of the cone are 
large (2 40”). Also, specifying the form of the SW as equidistant from the body leads to a 
"non-physical" discontinuity appearing in the curvature of the SW and hence to a jump in the 
component of the pressure gradient tangential to the body. We recommend the use of more- 
accurate approximations (e.g. approximation (3.21, (3.3)) for specifying the position of the 
SW. The resulting error in the distribution of the pressure, friction and heat transfer over 
the body remains the same, on the whole, in the case of iterative refining of the position of 
the SW within the framework of the model of the TVSL. 
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3. 
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THE EFFECT OF CONJUGATED AND RADIANT HEAT EXCHANGE ON THE PROCESS OF 
NON-STATIONARY COMBUSTION OF THE PRODUCTS OF INTENSE GASIFICATION OF 

A SOLID IN A STREAM OF GAS* 

V.M. AGRANAT AND D.A. GUBIN 

This paper develops further the results obtained in /l-4/ and uses the 
approximate mathematical model /2/ of the combustion of the products of 
intense gasification of the neighbourhood of the leading stagnation 
point of the body to analyse the effect of the conjugation parameters on 
the heat exchange, radiation and other factors on the conditions of 
uniqueness and stability of the stationary combustion modes. When the 
gasification is carried out at a constant mass flow rate, an analogy is 
established, depending on the relations between the parameters of the 
problem, between the model in question and the models of a homogeneous 
chemical continuous action reactor with a fluidized catalyst layer, and 
a reactor with a temperature regulator /5/. Simple necessary conditions 
for the instability of the stationary modes and the appearance of self- 
excited oscillations are obtained. A strong stabilizing influence of 
the conjugated heat exchange and intense injection on the combustion 


